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OF A H E A V Y  L I Q U I D  OF F I N I T E  D E P T H  W I T H  A F R E E  S U R F A C E  

K. E. Afanas ' ev  a n d  S. V. Stukolov UDC 532.5 

Steady problems of a circulation flow around bodies by a flow of a heavy liquid bounded by a free 
surface and a straight bottom are solved. The method of complex boundary elements is used, 
which is based on the integral Cauchy formula written for a complex-conjugate velocity. Results 
of numerical calculations of the flow around a circular contour and the Joukowski airfoil are 
presented. Shapes of the free surface and the most important hydrodynamic characteristics of 
the process (velocity circulation over the airfoil and the lifting force and its moment relative 
to the sharp edge of the airfoil) are given. 

A great number of papers are devoted to solving problems of the flow around airfoils by different 
methods. Belotserkovskii et al. [1] employ the method of discrete vortices, which is widely used in calculations. 

The solution of boundary-value problems of the flow around airfoils often reduces to the solution of 
singular integral equations, which have a parametric singularity (maximum thickness of the airfoil) in addition 
to the singular one. This singularity is manifested in the fact that the distance between the neighboring points 
on the upper and lower sides of the contour decreases as the airfoil becomes thinner. As a result, equations 
written separately for the upper and lower surfaces of the airfoil become identical, which creates many 
difficulties in numerical solution of the problem for the case of thin airfoils and in the vicinity of the trailing 
edge. 

Gorelov [2] obtained a system of integral equations in shear components of velocities at the upper and 
lower airfoil surfaces, which does not possess this parametric singularity. The system of equations is solved 
by the method of discrete vortices, and it is shown that this method is applicable for solving problems of the 
flow around airfoils of an arbitrary thickness, including the infinitesimal one. 

Using the method of boundary elements (MBE), Terent'ev and Kartuzova [3] investigated a circulation 
flow around a system of airfoils by an unbounded liquid flow. The third Green formula for the stream function 
is used as an integral relation. 

The MBE with the third Green formula for the velocity-potential function ~(x, y) cannot be used to 
solve problems of the circulation flow around airfoils, since ~(x, y) is not uniquely determined and experiences 
the first-kind discontinuity in the sharp edge of the airfoil for circulation other than zero, whereas the 
stream function r y) remains continuous [4]. Nevertheless, if we introduce a new single-valued function 
�9 (x,y)  = ~(x ,y)  - Fargz/(27r), we can use the third Green formula in the solution, and the circulation F 
enters the solution as an additional unknown. 

Yas'ko [5] considered a steady problem of the flow around airfoils using the hIBE with the third Green 
formula for the stream function in a bounded flow with a free surface. To determine the unknown free 
boundary, Yas'ko proposed iteration algorithms for high and low Froude numbers, but for Froude numbers 
close to unity, the solution cannot be obtained using the method described in [5]. 
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Fig. 1 

Mokry [6] proposed a method for studying the flow around an airfoil, which employs the integral 
Cauchy formula written for the shear and normal components of velocity. Solutions are obtained both  for an 
isolated airfoil and for a system of airfoils in an unbounded flow. 

A modified complex method of boundary elements (CMBE) is proposed in the present paper to solve 

steady problems of the circulation flow around airfoils by a liquid flow of finite depth with a free surface. 
The accuracy of the method and the algorithm for constructing the free boundary was determined in test 

calculations. 
1. F o r m u l a t i o n  o f  t h e  P r o b l e m .  Let an isolated airfoil with boundary C5 be located in a flow 

of a ponderable liquid bounded by the free surface C1, straight bot tom Ca, and inflow and outflow sections 
C2 and C4. respectively (Fig. 1). We introduce the following notation: the inflow velocity V~ and the flow 
depth H.  We consider the problem in the plane of the complex variable z = x + ig. The motion of the liquid 
is described by tile function w ( z )  = p ( x ,  y )  + ~ ( x ,  y) ,  where c2 is the velocity potential and ~) is the stream 
function. In the circulation flow around the airfoil, the potential has a discontinuity whereas the velocity 
field remains continuous; therefore, the problem can be more easily solved in terms of the complex-conjugate 

velocity: 

0~ 0r 04 
W(z) ~ x  + i Ox - Ox * = I'z - iVy. (1) 

Let ~ be a point that  belongs to the contour; then expression (1) can be written in the form 

W ( ~ )  = V~(~) - iV~,(~) = (V,~(~) - i ~ ( ~ ) )  e - i~ (~ ,  

where V~ and V,~ are the shear and normal components of velocity at the point ~ and a is the angle between 
the direction of l/~ and the O x  axis. 

The  problem of the flow around an airfoil can be reduced to solving the Laplace equation 

AW(z)  = O. z E D 

for tile function W(z),  which is analytical in the flow domain D. The no-slip condition is satisfied on the 
airfoil and on the bottom: V,~ = 0 (z E C5, C3). The conditions of liquid inflow and outflow are imposed at 

the side boundaries: Vn = =FI~ (z e (32, C4).  
Let V + and V~- be the shear components of velocity vectors when approaching the sharp edge from the 

upper and lower sides of the airfoil, respectively. Then the Joukowski-Chaplygin condition can be writ ten as 
V + + Vs-- = 0. Introducing the notation V ~ = V + + V Z ,  we write the Joukowski-Chaplygin condition in the 

form 

v2 = o. (2) 

In this case, the angle c~ is formed by the bisectrix of the corner in the sharp edge and the O x  axis. 
The  free boundary is a streamline on which the Bernoulli equation is valid: 

IW( -)l 2 -- 1 - 2(Im z - 1)/Fr s (z e C1). (3) 

Here Fr = V c c / g v ~  (9 is the acceleration of gravity). The  free surface C1 is unknown a pr ior i  and should 

be found numerically in the course of solving the problem. 
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2. N u m e r i c a l  M e t h o d .  For the function W ( z )  = V~(x,y) - i V y ( x , y ) ;  which is analytical in the 
5 

domain D and limited by the piecewise-smooth boundary  C = U c j ,  the integral Cauchy formula is valid, 
j = l  

which can be wri t ten in the following form using Sokhotskii 's limiting formulas: 

I f w(z )  dz. 
W(z0)  = c(~0)-----i ~ z - :o (4) 

c 

Here we have ~(z0) = 2zr for an internal point, e(z0) = zr for a point on the smooth boundary C, and ~(z0) = 0 
for a corner point of the boundary C (0 is the apex angle). The positive direction of motion along the contour 
C is taken such that  the domain D remains on the left (anticlockwise motion along the external boundary 
and clockwise motion along the internal boundary).  

Since V~ and Vn on the boundaries of the domain are known in the course of solving the problem, 
Eq. (4) should be rewrit ten as 

e_~(: , ,  ) _ ~ f (v~(~) - iVy(z)) e - ~ ( : )  
W(zo) (v.(~o) iVs(zo) ) dz. 

S(zo)i J ~. - zo 
C 

Knowing V~ and E~, we can find V~ and t~ using the formulas 

~ = Vn cos a - Vs sin a, Vy = I~ cos a + V~ sin a.  (5) 

Since the shear component of velocity on the free surface and the normal component of velocity on the 
bot tom, side wails, and airfoil are known, we obtain a mixed boundary-value problem for the function W ( z ) .  
A numerical solution of this problem can be obtained by dividing the contour C into N linear elements Fj by 

n 
the nodes zj (j = 1----,--~). Then we have IV(z) = lim G(z),  where G(z)  = E lVjAj(z)  is the global linear 

max I Fj I-'-~0 j=l 

n 

test function for z �9 ~ Fj, I4~ is the value of W ( z )  at the point zj, and Aj(z) is the linear basis function: 
j = l  

(z-  : e 

Aj(z) = (Zj+l -- ~ ) / ( Z j + I  ~ -- Zj ) ,  Z �9 r j ,  

0, Z ~ F j--1 U Fj. 
After this division and linear approximation of the function W(z) at the boundary, the Cauchy integral 

can be calculated analytically in the sense of tile main value as z ~ zj. As a result, we obtain 

N 

27ritlQ = l ~ + l  - ~$~-1 + }}~ In Zj+l -- Zj 4- E Irn, (6) 
Z j _  1 -- Zj re=l, 

m#j,j+l 

where 
[ ( z j -  zm)Wm+l (Zj -- Z m + l ) ~ ]  Zm+, -- Z~ 

I m -  ~4'm+l -- Wm 4-L Z m j : ' ~ m  -- Z T ~ l  - - ~ m  J in  z - - -~ :z~  ' . 

Substi tut ing the decomposition of the complex velocity into shear and normal components into (6), 

we obtain 

where 
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27ri(V.j - iVs j  ) e - i c ~  = ( V n j + l  - iV~j+ l  ) e - ic ' j+~ 

-- (Vnj_ 1 - iVsj_l)e  -iaj-1 -4- (gnj - iVs j )e  -icU in Zj+l - zj 4- E Ira, (7) 
zj-1 - zj 

N 

ra=l 
m#3, j+ l  

I m =  ( V n m + t  - i V s . , + t )  e - i a m + ~  - (*~qm -~Vs~)e" - Jam 



i~ in zm l zj ' 
* m + l  - -  Zm ~-m+l - -  Zm Z m - -  Zj 

e-i~J = -i~l;;~+~ : ~  + Iz~ zj-1 Izj+1 - ~  + I~ : ~7-112 
Writing Eq. (7) for each boundary node and separating the imaginary and real parts, we obtain 

S X  + i B X  = O, 

where S and B are the completely filled matrices N x 2N (N refers to rows and 2N to columns) and 
X = X(Vs~, Vn~, Vs2, Vn2 . . . . .  VsN, VnN) is a vector. Following [7]. we obtain the system of equations 

Q x  = F ,  (8) 
where the matr ix Q and the right-side vector F are obtained as follows. If the shear component of velocity 
Vs3 is prescribed at the node zj, the j t h  row of the matr ix  B is taken. After choosing the elements of the row 
corresponding to unknown values of Vs or Vn at all other nodes, we obtain the j t h  row of the matr ix  Q, the 
j t h  element of the vector X corresponds to Vnj, and the j t h  element of the vector F is the sum of the known 
values of 1~ or V~ multiplied by the corresponding elements of the matrLx B. If the normal component of 
velocity Vn3 is specified in the node zj, the matrix S is used to construct system (8). 

System (8) is solved using the Gauss method along the leading element. 

3. A l g o r i t h m  for  C o n s t r u c t i n g  t h e  F ree  B o u n d a r y .  Determination of Vs. It should be noted 
that  the steady problem of the flow around an obstacle has a nonunique solution for a certain range of Froude 
numbers. The qualitative behavior of this problem can be determined by an example of the flow without an 
obstacle. The trivial solution of this problem for arbi t rary Froude numbers is a uniform flow, and the other 
solution is a solitary wave. It is shown [8, 9] that  this problem has a unique solution if we use the quantity 
V = Vo/Vc~, where V0 is the velocity at the wave crest, as the governing parameter  instead of the Froude 
number. For the parameter  II, Eq. (3) can be written in the form 

I w l  = v / 1  - (1  - v 2 ) ( y  _ 1 ) / ( ~ 0  - 1 ) ,  

where Y0 is the ordinate of the point of the free surface in which the velocity V0 is set. 
Since the boundary C1 is a streamline, the velocity vector on it is directed tangentially to the contour. 

Hence, it follows that  [W] = Vs. For all points of the free boundary, we have 

Vs~ = V/1 - (1 - V2)(yj - 1)/(y0 - 1), (9) 

where j = 1, Ng are the numbers of node points of the free boundary. 

Determination of the Shape of the Free Boundary. Let a certain position of the free boundary C} k) be 
known. The algorithm for finding the free boundary has the following stages: 

1) the values of V~j in the nodes zj on C} k) are found from Eq. (9); 

2) the system of linear equations (8) is solved; 
3) the values of the velocity-vector components V~j and Vyj axe determined at the points of the free 

boundary  C} k) using (5); 

4) from the condition of collineaxity of the velocity vector and the tangent to the boundary dy/dx  = 
~(k+l) Vy/Vz, a new position of the free boundary , q  is calculated by the formula 
y j k + l  ~ k + l  k +1= Y3 + Ay j ,  

where the increment Ay)" is determined on the basis of expansion into a Taylor series: 

A y e =  Vy3 1 d (Vyj~ 1 d 3 [Vyj~ 4 
(xj+l - ~ )  + g., ~ ~P~,: (~J+l - xJ)~ + "  + ~ ~ ~K~ J (~+~ - ~J) " 

The cycle is repeated until the required accuracy maxly~ + 1 -  y][ < e is reached, and then the Froude 
J 

number is calculated using the formula Fr = v/2(yo - 1)/(1 - V2). The straight line y0 = I is used as the 
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TABLE 1 

N E1 K(Q) 

77 1.2-10 -2 9.44 
144 2.8.10 -3 10.32 
288 6.9-10 -4 11.26 
496 1.7.10 -4 13.43 

TABLE 2 

Present work [9] 

V Fr A Fr I A 

0.01 1.2913 0.8337 1.2909 I 0.8332 
0.70 1.1541 0.3396 1.1540 0.3395 

zero approximation; an exception is the vicinity of the point Y0 where the initial value is assumed to be 

y0 ~ -- 1 + 0.001. 
4. T e s t  C a l c u l a t i o n s .  The accuracy of the modified CMBE was checked using the following test. 

We have to find a solution of the Laplace equation for the function W ( z )  in the domain D -- {0 ~< x ~< 
2~r; - 1  ~< y ~< 0.5sinx},  in which the no-slip condition Vn = 0 is imposed on the bot tom and vertical walls 
and the harmonic function Vs = ( s inxcosh (y  + 1) - c o s 2 x s i n h ( y  + 1))/x/1 §  is set at the upper 
boundary. Table 1 (column 2) shows the relative error E1 = max ]V~ exact - v n u m [ / m a x  ]vexact  i depending on 

the number of boundary  nodes, where V hum is the numerical value of the function obtained by the CMBE and 
VT exact ---- ( s inxcosh  (y -4- 1) -4- sinh (y -4- 1)) cosx/v /1  -4- cos 2 x is the exact value. The conditionality numbers 

K ( Q )  of system (8) are listed in column 3. 
The objective of the second test was to check the algorithm of constructing the free surface. In 

the absence of an obstacle in the flow, by varying the parameter  V, we obtained solitary steady waves 
whose parameters were little different from those obtained by Mokry [6], who used a similar method for 
constructing the free boundary, but  the solution is based on the conventional CMBE. The Froude numbers 
Fr and amplitudes A of solitary waves are listed in Table 2. The values obtained using the modified C M B E  

and traditional CMBE (the results are borrowed from [9]) are listed in columns 2-3 and 4-5, respectively. 
The  third test was performed on the problem of the flow around the Joukowski airfoil by an unbounded 

liquid flow. This problem has an analytical solution and is a good test verification of the numerical result. 
The Joukowski airfoil can be prescribed parametrically in the form [3] 

x ( t )  = c(c2 + b2 -4- 1) c(c 2 + 5 2 - 1) 
2@ 2 .4.b 2) - 1 ,  y(t) = 2@ 2 + b 2  ) , 0~<t  ~<27r, (10) 

where c = R c o s ( t - 7 ) - d c o s T ,  b = R sin (t - 7) .4. d sin "y ,4, b. R = ~ , 4 , d ,  and 7 = a rc t anh .  
The parameters  d and h characterize the airfoil thickness and curvature. The  flow velocity on the airfoil is 

determined analytically in a parametric  form as 

Vs(t) = VzcR sin (/~ + 7 - t) + F/(27~), (11) 
k/(x ' ( t ) )  2 -4- (y'(t)) 2 

where/3 is the angle of attack and F = - 2 7 r R V ~  sin (~ + "y) is the circulation of velocity along the airfoil 

contour. The  numerical value of circulation was determined from the formula [10] 

r = fv ds. 
c 

The coefficients of the lift force Fy and drag force Fx were calculated using the formulas 

Fy = - Vr sm a(s)  ds, Fz  = V 2 cos c~(s) ds. 

c c 

An additional criterion of the correctness of numerical calculations can be the condition Fx = 0, which is the 

d 'Alembert  paradox for the case of a perfect fluid. 
The  coefficient of the force moment M relative to the sharp edge with the coordinates (x0, Y0) can be 

calculated using the formula 
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TABLE 3 

r deg d ] h 

0 0.2 [ 0.2 
0 0.2 0.5 

15 0.2 0 
15 0.2 0.2 
15 0.2 0.5 

F 

i -1.503 
I -3.703 
i -1.951 

-3.397 
-5.494 

F2oo 

- 1.493 
-3.671 
-1.935 
-3.371 
-5.446 

E2 

0.004 
0.007 
0.005 
0.007 
0.009 

0.0002 
0.001 
0.001 
0.002 
0.003 

Y~ 

2.978 
7.338 
3.868 
6.739 
10.887 

M 

-3.318 
-8.108 
-5.880 
-8.886 

-12.744 

F 
M(xo.yo) = - / V~((x - x0) s i n s ( s )  + (9 - y0) cos a ( s ) )  ds.  

C 

The results of the solution can be explained as follows: if F < 0, then Fy > 0, and vice versa, if F > 0, then 
Fy < 0. The  negative value of the lifting force means tha t  it tries to turn the body  relative to the point 

(x0, Y0) in the clockwise direction, and the positive value refers to the anticlockwise direction. 

The  integral Cauchy formula is also valid for the unbounded domain D if the function W(z) vanishes 
at infinity. In an unbounded liquid flow around the airfoil, the complex potential  has the following expansion 

at infinity: 

F 
w ( : )  = ~(x, y) + ir 9) = a + ~ e - i ~ z  + ~ In ~ .  

Here a is an arbi t rary  complex constant.  The complex-conjugate flow velocity a t  infinity is determined from 

the formula 

IV( z )  = Vx(x,  y) - iVy(x ,  y) -- Vote - i3.  (12) 

Wi th  account of (12), Eq. (4) acquires the form 

�9 1 f W(z) dz. 
I'V(zo) -= V ~ e  - ~  + ~ . ,  z - zo 

c 

In this case, the motion along the contour is performed in the clockwise direction. In constructing system (8), 
we have to introduce a terra into the known right-side vector F (imaginary or real par t  of Vote - i3  to each 

element of the vector depending on the prescribed boundary  condition in the j t h  node). 
Table 3 shows the hydrodynamic characteristics as functions of the angle of a t tack and airfoil thickness 

and curvature; F and F200 are the exact and numerical values of circulation, respectively (200 is the number  
of nodes over the airfoil boundary) ,  E2 = max  ]Vs exact - Vsnuml /max  [vexactl is the relative error, V num 

is the numerical value of the function obtained using the CMBE, Vs exact is the exact value determined by 

formula (11), Fz and Fy are the drag and lift coefficients, and M is the lift-force moment  relative to the sharp 

edge of the airfoil. The  values of -fix are close to zero, and the relative error of the determined values of V~ is 

insignificant, which indicates that  the method developed is highly accurate. 
5. N u m e r i c a l  R e s u l t s .  As an example, we consider two problems: a circulation flow around a 

circular contour of d iameter  d = 0.4H and around the Joukowski airfoil (d = 0 .2H and h = 0) constructed 
using formulas (10) and reduced proport ionally to I = 0.4H, where l is the airfoil chord length. The boundary  
of the domain was approximated by 500 elements (the object was specified by i00 elements, the free boundary 

by 200 elements, the straight bottom by 150 elements, and the inflow and outflow sectors by 50 elements). 

For the Joukowski airfoil, the convergence point of the streamlines is located in the sharp edge; for a 

circular contour, this point is unknown, and to obtain a unique solution of the problem, one has to specie" 

either velocity circulation on the circular contour or the convergence point. To specify the convergence point, 

one has to use the Joukowski-Chaplygin condition (2) at this point. 

It follows from the analysis of calculation results for a circulation flow around a circular contour and 

the Joukowski airfoil that the problem has a nonunique solution for Froude numbers close to unity. Figure 2 

shows the calculation results for the dependence of the amplitude A on the Froude number Fr in the flow 
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around a circular contour whose center is located at the point (0; 0.5) [curve 1 corresponds to the convergence 
point (0.152;0.37) and curve 2 to (0.2;0.5)] and the Joukowski airfoil whose sharp edge is located at the 

point (0.2; 0.5) [curve 3 corresponds to the angle of a t t ack /3  = 15 ~ and curve 4 to ~ = 0]. The  dashed curve 
corresponds to the dependence Amax --- Fr2/2 and is the ampli tude limit of existence of s teady solutions. 

Curves 3 and 4 do not reacil the dashed curve. For a circulation flow around airfoils, apparently,  another  

es t imate  of the upper  boundary  is valid for ampli tudes  for which the problem has a s teady solution. 
Figure 3 shows the shapes of the free surface in the flow around two bodies: (a) circular contour 

[convergence point (0.2; 0.5)] for Fr = 1.351 and A = 0.904 (curve 1), Fr = 1.346 and A = 0.818 (curve 2), 

Fr = 1.235 and A = 0.356 (curve 3), and Fr = 1.346 and A = 0.22 (curve 4); (b) Joukowski airfoil (3 = 0) for 
Fr = 1.264 and A = 0.634 (curve 1), Fr = 1.173 and A = 0.383 (curve 2), Fr = 1.064 and A = 0.087 (curve 3), 

and Fr = 1.173 and A = 0.035 (curve 4). Curves 1 correspond to the wave of the mmximum ampli tude for 

which a s teady solution was obtained, curves 2 and 4 to an identical Froude number  but  different ampli tudes 
(these curves demons t ra te  that  the solution is not unique), and curves 3 to the Froude number  below which 

there are no s teady solutions. 
Figure 4 shows the streamlines of the flow field near the object: (a) circular contour [convergence point 

(0.2; 0.5)] for Fr = 1.235 and A = 0.356; (b) circular contour [convergence point (0.152; 0.37)] for Fr = 1.458 

and A = 0.718; (e) Joukowski airfoil (/3 = 0) for Fr = 1.064 and A = 0.087; (d) Joukowski airfoil (/3 = 15 ~ for 

Fr = 1 . 2 3 7  and A = 0.355. The  velocity field in the  flow region was calculated to construct  the streamlines. 
Good  agreement  of the flow pa t t e rn  and the Joukowski condition give indirect evidence of the correctness of 

the calculations. 
Figure 5 shows the hydrodynamic  characterist ics versus the Froude number.  The  solid curves corre- 

spond to the flow around a circular contour with the convergence point (0.152; 0.37) and the dashed curves 

to the flow around the Joukowski airfoil with an angle of a t tack ~ = 15 ~ The  plots for two other objects are 

not presented because their hydrodynamic  characteristics are too small. 
C o n c l u s i o n s .  An effective numerical me thod  for calculation of a nonlinear s teady problem of the 
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circulation flow around an airfoil under the free surface of a perfect ponderable liquid is developed in the 
present paper. To sa t is~  the Joukowski-Chaplygin condition, an approach different from those in the cited 
papers on this topic was used at the sharp edge. To solve the problem, the CMBE was modified, and the 
well-proven algorithm of constructing the free boundary [8, 9] was used. In the circulation flow around a 
circular contour and the Joukowski airfoil, the solution is not umque for Froude numbers close to unity. 
Since this problem is multiparametric, the effect of all the parameters of the problem on the hydrodynamic 
characteristics of the airfoil will be studied later in more detail. 
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